Lunar International Science Calibration/Coordination Targets*

C. M. Pieters

J. W. Head, P. Isaacson, N. Petro, C. Runyon, Benefiting from international discussion at COSPAR 2006 and ICEUM8th in Beijing

*Paper submitted to COSPAR/ICEUM8 proceedings

New Generation of Missions to the Moon

	SMART-1	SELENE	ChangÕE	Chandrayaan-	LRO	Lunar-A
	[ESA]	[JAXA]	[CNSA]	1 [ISRO]	[NASA]	[JAXA]
Launch	2003	2007	2007	2008	2008	2010?
Orbit	400 x 4000	100 km polar	200 km polar	100 km polar	50 km polar	Elliptical
	km polar	circular	circular	circular	circular	
Objectives	Technology	Study lunar	Surface	Simultaneous	Improve	Determine
	demonstration;	origin and	structure,	composition	geodetic	the interior
	investigate	evolution;	topography,	and terrain	net; evaluate	structure of
	poles	develop	composition;	mapping;	polar areas;	the Moon
		technology for	particle	demonstrate	study	
		future lunar	environment	impact probe	radiation	
		exploration			environment	
Payload	AMIE, CIXS,	TC, MI, SP,	4-band micro-	TMC, HySI,	LOLA,	Penetrators:
	SIR, plasma	relay	wave, IIM,	LLRI, HEX,	LROC,	seismometer,
	experiments	satellites, X-	X-ray, γ-ray,	Impact probe +	LAMP,	heat flow
		ray, γ-ray;	WA stereo,	CIXS, SARA,	LEND,	
		laser altimeter;	energetic ions,	SIR2, miniSAR,	CRaTER,	
		radar sounder,	laser altimeter	M3, RADOM	Radiometer	
		magnetometer,				
		plasma imager				

International Opportunities:

Coordination

- Optimize independent activities
- Exchange information for planning

Collaboration

- Release data to community
- Invite participation

Cooperation

- Plan joint activities and strategy
- Exchange experiments and personnel

Lunar International Science Coordinated/Calibration Targets (LISCT)

Lunar International Science Coordinated/Calibration Targets (L-ISCT)

1 Apollo 16: 9.0S; 15.5E

3 Apollo 15: 26.1N; 3.7E

2 Lichtenberg Crater E Rim: 32N; 68W

4 NW South Pole-Aitken Basin 30.5S; 175.5E and 41S; 165E

- **Purpose**: Five specific lunar targets are recommended
 - for cross-calibration of diverse multi-national instruments and
 - as the seed for training young scientists with lunar science issues.
- Recommended Coordination: Within the science plan of individual missions, these small targets
 - merit special study
 - by a wide range of sensors.

For mutual benefit, data should pass initial calibration then be released for coordinated analyses by the international community.

#1 Apollo 16

Standard Calibration Area (mature soil)

Apollo 16: 9.0S; 15.5E

- This site is a large region of relatively uniform feldspathic highlands on the nearside.
- Mature soil and several fresh craters of various sizes are in the region.
- Apollo ground truth provides excellent calibration.
- Is there evidence for multiple units of different basin ejecta?

#2 Lichtenberg

Lichtenberg Crater E Rim: 32N; 68W

- Some of the youngest high-Ti basalts on the Moon appear to overlay fresh crater deposits.
- Age relations of basalt with the crater Lichtenberg need confirmation.
- Significant contrast with the much older eastern high-Ti basalts.

SMART-1 Clementine

#3 Hadley Rille Imbrium Rim

Apollo 15: 26.1N; 3.7E

- The evolution of this site on a ring of Imbrium Basin records a diversity of fundamental geologic processes that are poorly understood.
- New remote sensing data can address multiple unresolved issues.
 - What is the nature of the maria and their relation to surrounding units?
 - Where is the lava the formed the sinuous rille?
 - Are there subunits in the Imbrium ejecta deposits? Which are impact melt deposits?
 - What is the distribution of pyroclastic green glass; where is the source area?
 - Is there evidence for stratigraphy and layers in the basin ejecta deposits? in the sinuous rille wall deposits?

#5: Tycho Crater

 Tycho is a fresh, bright rayed crater on the nearside.

- It is easily found with binoculars.
 [Education/Outreach]
- It is scientifically interesting
 - Dark halo impact melt
 - Central peak
 - Prominent mineral absorption bands
 - Highland pluton?

Five Lunar International Science Coordinated/Calibration Targets (LISCT)

Suggested Initial Implementation

- **1. Agreement** and support is formed among international community of scientists for the LISCT concept.
- 2. Scientists on each instrument team make these five LISCT targets a *measurement* goal.
- 3. Instrument teams pledge their *intention to release LISCT data* (and preliminary calibrations) with initial mission results.
- 4. Instrument teams (or project) prepare an informal public **website** devoted to LISCT data for early release of data.
- 5. As coordination/calibration progresses, data are improved and revised and *formally released* into the public domain (in PDS compatible format on the timescale of individual projects).

Additional suggestions:

6. Team-to-team interaction/discussion is encouraged. Contact information is made available within the projects to allow informal *direct interactions* at the discretion of the project.

